середу, 30 жовтня 2013 р.

понеділок, 28 жовтня 2013 р.

тести до теми "Нуклеїнові кислоти"

Тестова робота
1. Яка азотиста основа є в ДНК і відсутня в РНК?
а) Урацил, б) Тимін, в) Цитозин, г) Гуанін.
2. Яка азотиста основа міститься в РНК  і відсутня в ДНК?
а) Аденін, б) Цитозин, в) Тимін, г) Урацил.
3. До складу ДНК входить:
а) рибоза, б) глюкоза, в) гексоза, г) дезоксирибоза.
4. Аденін одного ланцюга завжди сполучається з:
а) Тиміном, б) Гуаніном, в)Урацилом, г) Цитозином   іншого ланцюга ДНК.
5. РНК являє собою:
а) одинарний, б) подвійний, в) потрійний, г) спіральний ланцюг.
6. Синтез РНК на матриці ДНК це:
а) реплікація, б) трансляція, в) транскрипція, г) репарація.
7. Згідно із закономірністю Чаргаффа, кількість Гуаніну в одному ланцюзі ДНК дорівнює кількості:
а) Цитозину, б) Урацилу, в) Аденіну, г) Тиміну іншого ланцюга.
8. Найменші розміри серед всіх молекул НК має:
а) рРНК, б) тРНК, в) мРНК, г) іРНК.
9. До стоп-кодонів належить:
а) УАА, б) ГГЦ, в)ААУ, г)ТТТ.
10. Одну амінокислоту кодують:
а) 2, б) 4, в) 6, г) 3 нуклеотиди.
11. Вперше молекули НК були виявлені в:
а) ядрі, б) вакуолях, в) мітохондріях, г) цитоплазмі.
12. Назва НК залежить від компоненту:
а) залишку ортофосфатної кислоти, б) пентози, в) залишку азотистої основи, г) ліпіду.

Нуклеїнові кислоти (для 1 курсу)

ДНК
«Нуклеїнові кислоти, їх будова, властивості, роль в життєдіяльності організмів»
 Сприймання та засвоювання учнями нового матеріалу.
Нуклеїнові кислоти – природні високомолекулярні органічні сполуки, що забезпечують збереження і передавання спадкової інформації в організмі.
Це – складні високомолекулярні біополімери, мономерами яких є нуклеотиди.
Число нуклеотидів у складі однієї молекули нуклеїнової кислоти може становити від 200 до 200 млн. Уперше нуклеїнові кислоти виявили в ядрі клітин, звідки й походить назва цих сполук (від лат. нуклеус – ядро). Але згодом ці сполуки виявили і в інших частинах клітини.
Молекула нуклеотиду складається з трьох частин:
-         залишків нітратної основи,
-         п’яти-вуглецевого моносахариду (пентози),
-          ортофосфатної кислоти.
 Залежно від виду пентози, що входить до складу нуклеотиду, розрізняють два типи нуклеїнових кислот: дезоксирибонуклеїнову (ДНК) і рибонуклеїнові (РНК).
 До складу ДНК входить залишок дезоксирибози, до РНК – рибози.
У молекулах ДНК і РНК містяться залишки різних нітратних основ.
У молекулі ДНК:
- залишки аденіну (скорочено позначається літерою А),
- гуаніну (Г),
- цитозину (Ц)
- тиміну (Т).
У молекулі РНК:
-         аденіну (А),
-         гуаніну (Г),
-         цитозину (Ц),
-          урацилу (У).
Три типи нітратних основ для молекул ДНК і РНК спільні (нуклеотиди з аденіном, гуаніном і цитозином), натомість тимін міститься лише в молекулах ДНК, тоді як урацил – тільки в молекулах РНК.
Як і молекулам білків, молекулам нуклеїнових кислот притаманні різні рівні просторової організації (конформації).
Мономерами нуклеїнових кислот є нуклеотиди.
До складу кожного нуклеотиду входять:
азотна основа;
вуглевод;
залишок фосфорної кислоти.
Будова ДНК.
Молекули ДНК у клітинах еукаріотів містяться в ядрі, пластидах і мітохондріях, а прокаріотів – в особливих ділянках цитоплазми.
Розшифрування структури ДНК має свою історію. 1950 року американський учений українського походження Ервін Чаргафф (1905–2002) та його колеги виявили певні закономірності кількісного вмісту нітратних основ у молекулі ДНК:
- по-перше, кількість нуклеотидів, що містять аденін у будь-якій молекулі ДНК, дорівнює числу нуклеотидів, які містять тимін (А = Т), а число нуклеотидів з гуаніном – числу нуклеотидів з цитозином (Г = Ц);
- по-друге, сума нуклеотидів з аденіном і гуаніном дорівнює сумі нуклеотидів з тиміном і цитозином (А + Г = Т + Ц).
Це відкриття сприяло встановленню в 50-х роках ХХ ст. просторової структури молекули ДНК. Молекула ДНК складається з двох ланцюгів нуклеотидів, які сполучаються між собою за допомогою водневих зв’язків. Ці зв’язки виникають між двома нуклеотидами, які ніби доповнюють один одного за розмірами.
Встановлено, що залишок аденіну (А) нуклеотиду одного ланцюга молекули ДНК завжди сполучається із залишком тиміну (Т) нуклеотиду іншого ланцюга (між ними виникає два водневі зв’язки), а гуаніну (Г) – з цитозином (Ц) (між ними виникає три водневі зв’язки).
Чітка відповідність нуклеотидів у двох ланцюгах ДНК має назву комплементарність (від лат. комплементум – доповнення). При цьому два ланцюги нуклеотидів обвивають один одного, створюючи закручену вправо спіраль.
Так виникає вторинна структура молекули ДНК, тоді як первинна це певна послідовність залишків нуклеотидів, розташованих у вигляді подвійного ланцюга. При цьому окремі нуклеотиди сполучаються між собою в ланцюжок за рахунок особливого різновиду міцних ковалентних зв’язків, які виникають між залишком вуглевода одного нуклеотиду та залишком ортофосфатної кислоти іншого.
Молекули ДНК у клітині становлять компактні структури. Наприклад, довжина ДНК найбільшої хромосоми людини дорівнює 8 см, але вона скручена таким чином, що вміщується в хромосомі завдовжки 5 мкм. Це відбувається завдяки тому, що дволанцюгова спіраль ДНК зазнає подальшого просторового ущільнення, формуючи третинну структуру – суперспіраль. Така будова характерна для ДНК хромосом еукаріотів і зумовлена взаємодією між ДНК та ядерними білками. У ядерній зоні клітин прокаріотів молекула ДНК має кільцеву будову.
Властивості ДНК.
Так само як і молекули білків, молекули ДНК здатні до денатурації та ренатурації, а також деструкції. За певних умов (дія кислот, лугів, високої температури тощо) водневі зв’язки між комплементарними нітратними основами різних ланцюгів молекули ДНК розриваються. При цьому молекула ДНК повністю або частково розпадається на окремі ланцюги й відповідно втрачає свою біологічну активність. Після припинення дії негативних чинників структура молекули може відновлюватися завдяки поновленню водневих зв’язків між комплементарними нуклеотидами.
Важлива властивість молекул ДНК – їхня здатність до самоподвоєння. Це явище ще називають реплікацією. Воно ґрунтується на принципі комплементарності: послідовність нуклеотидів у новоствореному ланцюзі визначається їхнім розташуванням у ланцюзі материнської молекули ДНК. При цьому ланцюг материнської молекули ДНК слугує матрицею. Реплікація ДНК – напівконсервативний процес, тобто дві дочірні молекули ДНК містять по одному ланцюгу, успадкованому від материнської молекули, і по одному – синтезованому заново. Завдяки цьому дочірні молекули ДНК є точною копією материнської. Це явище забезпечує точну передачу спадкової інформації від материнської молекули ДНК дочірнім.
Функції ДНК.
Основні функції ДНК – це кодування, збереження та реалізація спадкової інформації, передача її дочірнім клітинам при розмноженні. Зокрема, окремі ланцюги молекули ДНК слугують матрицею для синтезу різних типів молекул РНК. Цей процес називається транскрипцією.
Одиницею спадковості всіх організмів є ген – ділянка молекули ДНК (у деяких вірусів – РНК), який несе спадкову інформацію про структуру певного білка або нуклеїнової кислоти.
Отже, саме ДНК кодує і зберігає спадкову інформацію в організмі і забезпечує її передачу дочірнім клітинам під час поділу материнської.
Функціонально ген – цілісна одиниця спадковості, бо будь-які порушення його будови змінюють закодовану в ньому інформацію або призводять до її втрати.
Типи РНК.
Молекули РНК клітин прокаріотів та еукаріотів складаються з одного ланцюга. Існують три основні типи РНК, які відрізняються за місцем розташування у клітині, розмірами та функціями.
1.Інформаційна, або матрична, РНК (іРНК, або мРНК) становить собою копію певної ділянки молекули ДНК. Така молекула переносить спадкову інформацію від ДНК до місця синтезу поліпептидного ланцюга, а також бере безпосередню участь у його збиранні.
2.Транспортна РНК (тРНК) має найменші розміри серед усіх молекул РНК (складається з 70–90 нуклеотидів). Вона приєднує амінокислоти і транспортує їх до місця синтезу білкових молекул. Там молекула тРНК «впізнає» відповідну ділянку іРНК. Ця ділянка – послідовність з трьох нуклеотидів, яка кодує одну з амінокислот. Таким чином визначається порядок розташування амінокислотних залишків у молекулі білка, що синтезується. Кожну з амінокислот транспортує до місця синтезу білка певна тРНК. У транспорті комплексу «молекула тРНК–залишок амінокислоти» беруть участь мікротрубочки та мікронитки цитоплазми. Транспортна РНК може мати вторинну структуру, що за формою нагадує листок конюшини. Така структура зумовлена тим, що в певних ділянках молекули тРНК (4–7 послідовних ланок) між комплементарними ну- клеотидами виникають водневі зв’язки. Біля верхівки «листка» містяться три нуклеотиди, або триплет, який за генетичним кодом відповідає певній амінокислоті. Цей триплет називають антикодоном. Біля основи молекули ДНК є ділянка, до якої завдяки ковалентному зв’язку приєднується відповідна амінокислота. Молекула тРНК може утворювати і складнішу конформацію (третинну), що нагадує латинську літеру «L» або слов’янську «Г».
3.Рибосомна РНК (рРНК) входить до складу особливих органел клітини – рибосом. Разом з білками вона виконує структурну функцію, забезпечуючи певне просторове розташування іРНК й тРНК під час біо синтезу білкової молекули. У клітинах еукаріотів рРНК синтезується в ядерці.


Надання та пояснення домашнього завдання.
§11-12, вивчити конспект.
Теми рефератів «ДНК, її будова, властивості, значення», «РНК, її будова, властивості, значення», «АТФ, її будова, властивості, значення»,


новий розклад з 28.10

Понеділок
1) 18-2
2) 16-1
3) 13-1
4) -
5) -
6) 16-2
7)

Вівторок

1) 16-1
2) 17-2
3) 10-2
4) 17-3
5) 12-2
6) 10-2
7) 18-3
8) -

Середа

1) 16-2
2) 17-1
3) 16-3
4) 15-2
5) 13-1
6) -
7) 11-3
8) 11-3


Четвер

1) 10-1
2) 14-1
3) 10-3
4) 12-2
5) 18-2
6) 17-2
7) 14-2


П'ятниця 

1) 18-1
2) 15-1
3) 17-1
4) 18-1
5) -
6) -
7) 15-3

четвер, 24 жовтня 2013 р.

на 25.10

17-1, 18-1 усне опитування по темі "Білки"
15- 3  контрольна робота по темах: комбінативна, мутаційна, модифікаційна мінливість

суботу, 19 жовтня 2013 р.

Білки. Функції білків. (§9-10)

Білки – складні біополімери. Будова і властивості білків.

Пригадайте
Що таке макромолекули, мономери і полімери? 
Яка роль білків у житті організмів? 
Що таке гемоглобін і ферменти?

Серед різних органічних сполук у живих організмів білкам належить провідна роль. 
Ці сполуки переважають у клітинах і кількісно. Так, у клітинах тварин вони становлять до 40-50% сухої речовини, а рослин - до 20-35%. До складу молекул білків входять атоми Карбону, Оксигену, Нітрогену, Гідрогену, Сульфуру, а також Фосфору, Феруму та ін.

Що собою становлять білки? 
Білки - це висо-комолекулярні біополімери, мономерами яких є залишки амінокислот (мал.8). Нескінченна різноманітність білкових молекул забезпечується різними комбінаціями залишків лише 20 амінокислот (кількість можливих варіантів у цьому випадку становить приблизно 2 • 1018). Кожен білок характеризується постійним складом амінокислотних залишків та їхньою певною послідовністю.
Усі амінокислоти мають спільну групу атомів. Вона складається з аміногрупи (-NH2), якій притаманні лужні властивості, та карбоксильної групи (—СООН) з кислотними властивостями. Ці групи, як і атом Гідрогену, зв'язані з одним і тим самим атомом Карбону. Групи атомів, за якими амінокислоти розрізняються між собою, називають радикалами, або R-групами.
Двадцять амінокислот, залишки яких входять до складу білків, називають основними.
Існують різні класифікації амінокислот. Зокрема, їх поділяють на замінні та незамінні. Замінні амінокислоти можуть синтезуватись в організмі людини і тварин з продуктів обміну речовин. Натомість незамінні амінокислоти в організмі людини і тварин не синтезуються. Вони надходять разом з їжею. їх синтезують рослини, гриби, бактерії.
Білки, які містять усі незамінні амінокислоти, називають повноцінними, на відміну від неповноцінних, до складу яких не входять ті чи інші незамінні амінокислоти. У таблиці наведено повні та скорочені назви амінокислот.

Яка будова білків? 
Амінокислотні залишки у молекулі білка сполучаються між собою міцним ковалентним зв'язком, який виникає між карбоксильною групою однієї амінокислоти і аміногрупою іншої.
Схема будови поліпептидного ланцюга
Мал. 8. Схема будови поліпептидного ланцюга


NH2—CH—COOH
           |
          R  

Загальна формула амінокислоти

Назви основних амінокислот та їхні скорочені позначення
Назви основних амінокислот та їхні скорочені позначення
Такий тип зв'язку називають пептидним (від грец. пептос — зварений). Структури, які складаються з великої кількості амінокислотних залишків, належать до поліпептидів:

...NH2—CH—CO—NH—CH—CO—NH—CH—COOH...
               I                      I                       I
              R1                   R2                   R3       

Поліпептиди з високою молекулярною масою (понад 6000) називають білками. Вони складаються з одного або кількох поліпептидних ланцюгів, які можуть містити до кількох тисяч амінокислотних залишків.
Відомо чотири рівні структурної організації білків: первинний, вторинний, третинний і четвертинний (мал.9).
Первинна структура білків визначається якісним і кількісним складом амінокислотних залишків, а також їхньою послідовністю.
Часто молекула білка у вигляді ланцюга, складеного з амінокислотних залишків, нездатна виконувати специфічні функції. Для цього вона має набути складнішої просторової структури.

      O   H
       ||    |
   —C—N—
Схема пептидного зв 'язку

Вторинна структура характеризує просторову організацію білкової молекули, яка повністю або частково закручується в спіраль. Радикали амінокислот (R-групи) при цьому залишаються ззовні спіралі. У підтриманні вторинної структури важлива роль належить водневим зв'язкам, які виникають між атомами Гідрогену NH2-rpynn одного витка спіралі та Оксигену СО-групи іншого.

Просторові моделі структурної організації білків
Мал. 9. Просторові моделі структурної організації білків

Третинна структура зумовлена здатністю поліпептидної спіралі закручуватись певним чином у грудку, або глобулу (від лат. глобулюс - кулька). На малюнку 9 наведено схематичну структуру білка міоглобіну. Важлива роль у підтриманні третинної структури належить так званим дисульфідним зв'язкам, які виникають між залишками амінокислоти цистеїну.
Четвертинна структура білків виникає внаслідок об'єднання окремих глобул, які разом утворюють функціональну одиницю. На малюнку 9 схематично зображено четвертинну структуру гемоглобіну, молекула якого складається з чотирьох фрагментів білка міоглобіну. Стабілізація четвертинної структури досягається гідрофобними, електростатичними та іншими взаємодіями, а також водневими зв'язками.
Залежно від конфігурації білки можуть бути фібрилярними та глобулярними. Молекули фібрилярних білків складаються з видовжених, паралельно розташованих поліпептидних ланцюгів. Як правило, ці білки нерозчинні у воді й виконують в організмі структурну функцію (наприклад, кератин входить до складу волосся людини або шерсті тварин). Молекули глобулярних білків складаються зі щільно скручених поліпептидних ланцюгів і за формою нагадують кульку. Ці білки здебільшого розчинні у воді та сольових розчинах. Вони виконують в організмі різноманітні функції (наприклад, гемоглобін забезпечує транспорт газів, пепсин - розщеплення білків їжі).
Залежно від особливостей будови білки поділяють на прості та складні. Прості, або протеїни (від грец. протос — перший), складаються лише з амінокислотних залишків, а складні, або протеїди (від грец. протос та ейдос - вигляд), у своєму складі мають також залишки фосфатної та нуклеїнових кислот, вуглеводів,ліпідів, атоми Феруму, Цинку, Купруму та ін.

Які властивості білків? 
функціональні властивості білків, крім їхнього амінокислотного складу, зумовлені також і послідовністю амінокислотних залишків у поліпептидному ланцюзі та його просторовою структурою.
Одна з основних властивостей білків — це їхня здатність під впливом різних факторів (дія концентрованих кислот і лугів, важких металів, високої температури тощо) змінювати свою структуру і властивості. Процес порушення природної структури білків, який супроводжується розгортанням поліпеп-тидного ланцюга без зміни його первинної структури, називають денатурацією (від лат. де - префікс, який означає втрату, і натура - природні властивості) (мал. 10). Як правило, денатурація має необоротний характер. Проте на початкових стадіях денатурації за умови припинення дії факторів, що спричиняють цей процес, білок може відновити свій початковий стан. Це явище має назву ренатурації (від лат. ре -префікс, який означає поновлення). У живих організмів відбувається часткова оборотна денатурація білків, пов'язана з виконанням ними певних функцій - забезпеченням рухової активності, передачею в клітини сигналів з довкілля, прискорення біохімічних реакцій тощо.
Процес порушення первинної структури білків називають деструкцією (від лат. деструкціо - руйнування). Він завжди має необоротний характер.
Залежно від розчинності або нерозчинності у воді білки поділяють на гідрофільні та гідрофобні. Серед білків є активні у хімічному відношенні (наприклад, ферменти) і малоактивні. Деякі білки стійкі до дії різних факторів (наприклад, температури, хімічних чинників), інші - нестійкі. Наприклад, кератин, який входить до складу волосся, кігтів, нігтів, копит, здатний витримувати високу й низьку температуру. Натомість білок яйця птахів (овальбумін) при нагріванні змінює свою структуру.
Денатурація та ренатурація білка
Мал. 10. Денатурація та ренатурація білка

Контрольні запитання
1. Що таке білки?
2. Яка будова білків?
3. Яка будова амінокислот?
4. Що таке замінні та незамінні амінокислоти?
5. Як амінокислоти сполучаються в поліпептидний ланцюг?
6. Які ви знаєте рівні структурної організації білків?
5. Які властивості притаманні білкам?


Поміркуйте
Що спільного та відмінного в процесах денатурації та деструкції?
Чим зумовлена різноманітність властивостей білків?
Яку роль у житті організмів відіграє здатність молекул білка до денатурації?
Чому відсутність у харчовому раціоні людини білків тваринного походження негативно впливає на життєдіяльність її організму?

М.Є. Кучеренко, Ю.Г. Первес, П.Г. Балан, В.М. Войціцький, Загальна біологія, 10 клас
Функції білків. Ферменти.

Пригадайте
Що таке органели?
Що таке ендосперм, антитіла та антигени?
Що таке катіони та аніони?
Які клітини належать до еукаріотичних?

Які функції білків у живих організмах?
Одна з основних функцій білків - будівельна, або структурна. Білки є складовою частиною біологічних мембран. З них складаються структури, які виконують роль скелета клітин.
Як ви пам'ятаєте, головним компонентом хрящів і сухожилків є пружний міцний білок колаген (мал. 11). Волокна, що складаються з цього білка, є у багатьох різновидах сполучної тканини і надають їм міцності. Пружності кісткам надає білок осеїн.

Схема колагенових волокон
Мал.11. Схема колагенових волокон

Захисна функція білків полягає у запобіганні пошкодженням клітин, органів, проникненню в організм сторонніх сполук, хвороботворних мікроорганізмів, інших чужорідних тіл. Наприклад, особливі захисні білки - імуноглобуліни, або антитіла, що утворюються в організмі хребетних тварин і людини, здатні «впізнавати» та знешкоджувати бактерії, віруси, чужорідні для організму білки. Білки крові - фібрин, тромбопластин і тромбін - беруть участь у процесах її зсідання, що запобігає великим крововтратам у разі ушкодження стінок кровоносних судин.
Окремі складні білки клітинних мембран, змінюючи свою структуру, передають сигнали із зовнішнього середовища на інші ділянки мембрани або всередину клітини. Так вони здійснюють сигнальну функцію.
Завдяки скоротливій (або руховій) функції білків клітини, тканини, органи або увесь організм можуть змінювати форму, рухатись. Скоротливі білки актин і міозин, які входять до складу м'язових та деяких інших клітин, забезпечують їхню здатність до скорочення (мал.12). Білок тубулін входить до складу мікротрубочок - компонентів джгутиків і війок певних клітин еукаріотів.
Схема будови м'язового волокна: світлі смужки - актин; темні - міозин
Мал. 12. Схема будови м'язового волокна: світлі смужки - актин; темні - міозин

Деякі білки можуть відкладатись у клітинах про запас, тобто виконують запасаючу функцію (мал.13). Наприклад, білок овальбумін, що накопичується у білковій оболонці пташиних яєць. Його споживає пташеня перед виходом з яйця. В ендоспермі насіння багатьох видів рослин (пшениці, кукурудзи, рису та ін.) відкладаються білки, які споживають зародки під час свого розвитку. Це живильна функція білків.
Білкові включення у зернівці пшениці
Мал. 13. Білкові включення у зернівці пшениці

Одна з основних функцій білків - транспортна. Гемоглобін - дихальний пігмент крові людини, хребетних і багатьох безхребетних тварин - переносить кисень і деяку частку (до 10%) вуглекислого газу (мал.14). Цим забезпечується газообмін у клітинах і тканинах.

Молекула гемоглобіну
Мал. 14. Молекула гемоглобіну

Енергетична функція білків полягає в тому, що за повного розщеплення 1 г білків у середньому звільняється 17,2 кДж енергії.
Деякі білки (гормони білкової природи, ферменти) виконують регуляторну функцію. Вони регулюють активність обміну речовин, процеси росту і розвитку організмів.
Важливою функцією білків є каталітична. Каталіз (від грец. каталіз - припинення) - зміна швидкості перебігу хімічних реакцій під дією певних хімічних сполук. Каталітичну функцію - біокаталіз -у живих організмах виконують ферменти.

Що таке ферменти? Які їхні функції?
Ферменти (від лат. ферментум - закваска), яких відомо понад 6 000, - це прості (однокомпонентні) або складні (двокомпонентні) білки. Складні білки, на відміну від простих, містять ще й небілкову частину у вигляді певних органічних сполук (наприклад, похідних вітамінів), катіонів або аніонів.
Білкова частина молекули ферменту визначає його специфічність щодо речовин, реакцію за участю яких цей фермент каталізує. Але активність складних ферментів виявляється лише тоді, коли його білкова частина сполучається з небілковою. Каталітичну активність ферменту зумовлює не вся його молекула, а лише її невелика ділянка - так званий активний центр. Його структура відповідає хімічній будові речовин, які вступають у реакцію. В одній молекулі ферменту може бути кілька активних центрів.
Ферменти прискорюють перебіг біохімічних процесів у 100 -1 000 разів порівняно з тими, які відбуваються у середовищі без ферментів. Завдяки ферментам енергія, необхідна для перебігу реакції, менша, ніж без їхньої участі (мал. 15).
Схема дії ферменту
Мал. 15. Схема дії ферменту

Активність ферментів виявляється лише за відповідних умов: певної температури, тиску, кислотності середовища тощо. Ферментативні реакції відбуваються у кілька послідовних етапів. Ланцюги взаємопов'язаних ферментативних реакцій забезпечують нормальний перебіг процесів обміну речовин і перетворення енергії в організмі.
Ферменти (зокрема їхні активні центри) утворюють нестійкий комплекс з речовинами, які вступають у реакцію. Цей комплекс згодом швидко розпадається з утворенням продуктів реакції. Сам фермент при цьому свою структуру, а відповідно і активність, не втрачає і здатний каталізувати наступну подібну реакцію.
У клітині багато ферментів пов'язано з плазматичною мембраною або мембранами окремих органел (мітохондрій, пластид тощо). Деякі ферменти беруть участь у транспортуванні речовин через мембрани.

Контрольні запитання
1. Які основні біологічні функції білків?
2. У чому полягає захисна функція білків?
3. Чим визначається рухова функція білків?
4. Що собою становлять ферменти?
5. Які функції виконують ферменти?
6. Завдяки чому ферменти здатні виконувати свої функції?
7. Завдяки яким властивостям білків живі організми здатні сприймати подразники?


Поміркуйте
Чому без участі ферментів перебіг більшості біохімічних процесів у клітині був би неможливим?
У результаті ферментативних реакцій, на відміну від безфер-ментних, не утворюються побічні продукти, тобто спостерігається майже 100 %-й вихід кінцевого продукту. Яке це має значення для нормального функціонування організму?


М.Є. Кучеренко, Ю.Г. Первес, П.Г. Балан, В.М. Войціцький, Загальна біологія, 10 клас

Розвиток біологічної науки

Розвиток біологічної науки

Терміни та поняття: натурфілософія, систематика, клітинна теорія.

Первинні уявлення про живу природу і перші спроби наукових узагальнень. Перші спроби систематизувати знання про живу природу належать давньогрецьким філософам. Античні мислителі висловлювали думки про сутність живого, походження тварин та людини.
Філософи-натуралісти Стародавньої Греції (V ст. до н. д.) вважали, що живі організми виникли з неживої матерії внаслідок її поступових змін. Причому потворні, неповноцінні істоти з часом вимерли, а гармонійні вижили й почали розмножуватися.
Найперші дослідження будови тіла людини провів видатний лікар, реформатор античної медицини, автор праць з анатомії «Про залози», «Про серце», «Про природу кісток» Гіппократ (мал. 12) (бл. 460-377 рр. до н. д.). Він досить добре знав будову серця, розрізняв артерії та вени, визначав черепномозкові та спинномозкові нерви. Гіппократ цілком справедливо вважав, що процес дихання відбувається за допомогою легень, але помилявся, думаючи, що цей процес слугує для охолодження серця. Він висловив геніальну на той час думку про зв'язок головного мозку з психічною діяльністю людини. (Пригадайте типи темпераменту та чотири основні «тілесні рідини», з якими їх пов'язував Гіппократ.)
Початок власне біологічної науки заклав у своїх працях давньогрецький вчений і філософ Аристотель (мал. 13) (384-322 рр. до н. д.), якого вважають засновником зоології. Він написав кілька спеціальних трактатів, присвячених будові, класифікації й виникненню тварин, найвідомішим з яких є «Історія тварин». У цій праці Аристотель описав будову тіла тварини, систему органів людини, здійснив порівняння будови тіла людини і тварини, розглянув способи розмноження й особливості розвитку тварин.
Засновником ботаніки вважають давньогрецького природодослідника Теофраста (мал. 14) (близько 372287 рр. до н. д.), улюбленого учня Аристотеля. У праці «Історія рослин» Теофраст описав різні способи розмноження рослин і процес проростання насіння, вказав на відмінності між однодольними і дводольними рослинами, визначив, що рослини можуть належати до чоловічої або жіночої статі. Він першим запровадив термін «плід».

Засновником ботаніки

Визначний біолог-дослідник, римський лікар Клавдій Гален (мал. 15) (н. д. 130-200) вважається батьком анатомії. Його авторитет як вченого був незаперечним понад тисячу років. Гален вивчав внутрішню будову свійських тварин: овець, биків, свиней, собак, а також мавп. Він дослідив і детально описав їхні серце, м'язову систему, центральну і периферичну нервові системи.
Біологія в Середні віки та епоху Відродження. В епоху Середньовіччя біологія практично не розвивалася.
(Пригадайте характерну ознаку цього періоду в історії людства.) Будь-які спроби проникнути в сутність природних явищ визнавалися єретизмом. Нечисленні сміливці, які наважувалися на це, зазнавали гонінь або були страчені. Серед них і видатний іспанський анатом Мігель Сервет (мал. 16) (1511-1553), який першим вказав на споріднені зв'язки між людиною і мавпою.
З XVI ст. розпочався бурхливий розвиток природознавства, філософії, мистецтва. Цей період називається епохою Відродження. Інтерес до природознавства був одним із чинників зародження промисловості, розвиток якої був неможливий без наукової революції. (Пригадайте з уроків історії, які саме наукові відкриття сприяли розвитку капіталістичних відносин на межі ХУ-ХУІ ст.)
Середньовічна біологія, як і антична, спочатку не відокремлювалася від філософії і тому називалась натурфілософією (від лат. натура — природа). Перші трактати про сутність та явища природи, присвячені питанням природознавства, були досить абстрактними. Проте поступово починають формуватися нові підходи до пізнання живої природи і набувають розвитку наукові методи досліджень — спостереження й експеримент. Саме на підставі експериментальних досліджень біологія сформувалася як наука.
Першочергову роль у становленні біології відіграли експериментальні дослідження з анатомії й фізіології людини, яких так потребувала медицина.
Не задовольняючись лекціями своїх учителів, які викладали за Галеном, Андреас Везалій (мал. 17) (1514-1564) під загрозою смертної кари потайки досліджував людські тіла. Везалій виправив близько 200 історичних помилок Галена, зокрема спростував твердження про те, що у чоловіків на одне ребро менше, ніж у жінок, та не знайшов кісточку, яка не горить у полум'ї і має таємничу силу, що дозволить людині воскреснути у день Страшного суду та постати перед Богом, як було описано у підручниках з анатомії того часу.

Вчені-дослідники

Інший видатний анатом, фізіолог та ембріолог Вільям Гарвей (мал. 18) (1578-1657) експериментально довів, що у людини відбувається безперервний замкнений кровообіг, встановив, що серце має м'язову будову і є органом кровообігу. Ці дослідження мали величезне значення: вони довели, що будова тіла і процеси, які відбуваються в організмі людини і тварини, подібні, а тому розуміння їхньої природи не потребує участі душі або божественного начала.
Геніальний художник, мислитель, технік Леонардо да Вінчі (1452-1519) протягом десятків років анатомував людські тіла і зробив багато точних замальовок. На жаль, його анатомічні трактати стали широковідомі лише через півтора століття після смерті автора і тому не мали впливу на розвиток цієї науки.
Важливий науковий напрям експериментальної біології кінця епохи Середньовіччя сформувався після відкриття дрібних істот, яких не здатне бачити око людини, а також клітинної будови організмів. Вивчення мікросвіту стало можливим завдяки розвитку оптики, винайденню лінз і мікроскопа. Значний внесок у розвиток мікроскопічних досліджень зробив англієць Роберт Гук (мал. 19) (1635-1703), який описав мікроскопічну будову тканин рослин та таких доволі дрібних об'єктів, як око мухи, крило бджоли, личинка комара. Виявив їх клітинну будову і голландець Антоні ван Левенгук (мал. 20) (1632-1723), який за допомогою виготовлених власноруч лінз із понад 250-кратним збільшенням першим побачив сперматозоїди, бактерії та найпростіших, назвавши їх «тваринками». (Пригадайте роздільну здатність сучасного світлового та електронного мікроскопа.) Сьогодні мікробіологія, засновником якої вважають Левенгука, переживає свій розквіт.

Вчені-біологи

«Всі мої прагнення спрямовані лише на те, щоб зробити очевидною істину і докласти мій невеликий талант до того, щоб відволікти людей від старих та забобонних переконань», — писав Левенгук. (Чи існують у сучасному світі забобонні переконання, які не може пояснити біологічна наука?)
Становлення основних біологічних наук у XVIII-XIX ст. Протягом XVIII — першої половини XIX ст. відбулося остаточне становлення біології як науки, сформувалися основні її напрями. (Назвіть відомі вам біологічні дисципліни.) Це супроводжувалося важливими науковими відкриттями. До них належить встановлення наприкінці XVIII ст. факту «живлення» у рослин, в якому важливу роль відіграють сонячні промені. (Пригадайте, що таке фотосинтез.) Практичні результати експериментів з живлення рослин, що їх проводили не лише біологи, а й хіміки та фізики, довели, що вивчати живі істоти можна так само, як і неживі об'єкти — за допомогою методів фізичних наук: вимірювань, зважувань та обчислень.
Цей період ознаменувався становленням систематики як самостійної науки та формуванням клітинної теорії.
Накопичення знань про тварин і рослини потребувало їх систематизації. Спочатку види тварин і рослин упорядковували за алфавітом, потім почали класифікувати за особливостями будови тіла і способу життя. Така класифікація допомагала ще й визначати види тварин і рослин. Вагомий внесок у формування системи тваринного і рослинного світу зробив шведський природознавець Карл Лінней (мал. 21) (1707-1778), який «зазирнув у кожну квітку» та за кількістю і характером тичинок поділив рослини на 24 класи. Його дослідження започаткували сучасну біологічну науку — систематику, завданням якої є впорядкування, класифікація всіх живих організмів. Головним недоліком системи Ліннея було те, що вона не враховувала спорідненості видів. Лише класифікація живих істот, побудована за багатьма ознаками, робить систему організмів сталою.
Цікаво, що сучасники Ліннея, зокрема Бюффон, рішуче заперечували класифікацію, яка, на їх думку, не тільки порушувала неперервність живих істот, але й «вбивала» прекрасний світ живої природи своєю штучністю. (Аяк вважаєте ви?)
Класифікацію Ліннея згодом було модифіковано. Адже науковець шукав лише подібні ознаки у рослин, і не бачив родинні зв'язки між видами, оскільки заперечував можливість еволюції та нерідко спирався у своїй роботі на інтуїцію та інстинкт натураліста.
У XIX ст. відбулися епохальні відкриття в області вивчення клітини. Було встановлено, що клітина складається з ядра і цитоплазми, а клітини тварин і рослин мають подібну будову. Спираючись на ці та інші факти, зокрема результати емпіричних досліджень Мат-тіаса Шлейдена (1804-1881) щодо ролі ядра в клітинах рослин, німецький біолог Теодор Шванн (мал. 22) (1810-1882) у 1839 р. сформулював теоретичне положення, відповідно до якого всім організмам властива клітинна будова. Клітинна теорія Т. Шванна містила й помилкові судження, зокрема вчений припускав, що клітини в організмі виникають шляхом новоутворень із первинної неклітинної речовини. Проте завдяки цій теорії стала очевидною спорідненість всіх живих істот — людина й інфузорія, миша і квасолина мають одну спільну ознаку: вони складаються з клітин.
Вчені
Історія науки про живе налічує майже 2500 років. Біологія як наука сучасного типу сформувалася протягом відносно короткого періоду (близько 300 років), коли в біологічні дослідження були впроваджені наукові поняття і методи фізики та хімії, внаслідок чого виникла експериментальна біологія.

С.В.Межжерін, Я.О.Межжеріна, Т.В.Коршевнюк, Біологія, 10 клас
Надіслано читачами інтернет-сайтів

Становлення сучасної біології

Терміни та поняття: концепція креаціонізму, палеонтологія, трансформізм, еволюційна теорія, дарвінізм, природна система організмів, генетика, молекулярна біологія, екологія.
Формування еволюційної теорії. До XVIII ст. у біології панувало уявлення про сталість і незмінність видів організмів, а їх різноманітність пояснювали результатом божественного творіння.
Наприкінці XVIII — початку XIX ст. ці погляди сформувалися як концепція (від лат. концепціо — розуміння, система) креаціонізму (від лат. креаціо — створення), згідно з якою світ людини та різні форми життя на Землі створені вищою надприродною силою. Її прихильники вважали, що видів існує стільки, скільки їх було під час створення світу.
Ілюстрацією панування креаціонізму в палеонтології того часу є опис скелета викопної гігантської саламандри як грішника — свідка Всесвітнього потопу.
Проте викопні рештки свідчили, що колись на Землі жили не окремі види тварин, що вимерли, а цілі групи, які послідовно змінювали одна одну. Для пояснення цієї суперечності французький зоолог Жорж Кюв'є (мал. 23) (1769-1832), якого вважають засновником палеонтології (від грец. палаїс — давній, онтос — істота, логос — вчення) — науки, що вивчає вимерлі організми, запропонував теорію, відповідно до якої в історії Землі були періоди катастроф, наслідком яких стало вимирання цілих груп тварин, після чого за волею Творця відбувалось оновлення тваринного і рослинного світу. Науковець доводив, що у світі тварин існує чотири типи тіла: членистий (раки, комахи, деякі черви); м'якотілий (равлики, восьминоги та ін.); хребетний та променевий. Якщо К. Лінней в основу своєї класифікації поклав виключно зовнішні ознаки, то Кюв'є додав до них анатомічні.
Кюв'є встановив принцип кореляції (від лат. кореляціо — співвідношення) органів. Наприклад, якщо звір мав ікла, то у нього не було рогів. На основі цього принципу науковець здійснив реконструкцію багатьох вимерлих тварин, яких раніше вважали «іграми природи» або «кістяками казкових велетнів» чи древніх святих.
Кюв'є описав близько 150 видів раніше невідомих науці ссавців та плазунів. «Дайте мені лише одну кістку, і я відновлю усю тварину», — говорив учений.
У той час, на противагу креаціонізму, розвивається трансформізм (від лат. трансформо — надавати нового вигляду, перетворювати) — вчення про історичну змінність організмів і походження одних видів від інших, що відбувається без участі Творця. Прибічниками цього вчення були Р. Гук, французький ботанік Жорж Луї Бюффон (мал. 24) (1707-1788), німецький природознавець і поет Йоганн Вольганг Гете (1749-1832), а також Еразм Дарвін (1731-1802) — англійський натураліст і поет, дід Чарлза Дарвіна.
Проте рушійні сили — фактори (від лат. фактор — той, що робить) еволюції (від лат. еволюціо — розгортання) — ці вчені детально не досліджували. Трансфор-місти обмежилися лише міркуваннями про первинну доцільність організмів і не розглядали власне біологічні механізми еволюційних перетворень, тому ця теорія трансформізму була таким самим умовиводом, як і креаціонізм.
Перша еволюційна теорія — система ідей про історичну змінність живого, що являла собою вершину трансформізму, була закладена французьким ученим Жаном Батістом Ламарком (мал. 25) (1744-1829). Основні положення цієї теорії викладено у праці «Філософія зоології»: організми змінюються під дією зовнішніх та внутрішніх факторів; види несталі і перетворюються в інші види; в організмах закладено прагнення до вдосконалення, на шляху до якого відбувається еволюція; зміни організмів, набуті за життя, успадковуються.

Вчені
Ламарк одним із перших спробував розробити природну систему рослин. За ступенем удосконалення квітки та плоду він поділив їх на таємношлюбні, однолопасні, неповні, складноцвітні, однопелюсткові, багатопелюсткові.
(Чи використовують у сучасній ботаніці цю класифікацію?)
Сучасний погляд на теорію еволюції пов'язаний з ім'ям Чарлза Дарвіна (мал. 26) (1809-1882), його теорією природного добору, яку він виклав в опублікованій у 1859 р. праці «Походження видів шляхом природного добору». За Дарвіном, еволюція відбувається внаслідок взаємодії трьох основних біологічних факторів: мінливості, спадковості та природного добору. Мінливість надає матеріал для еволюційних перетворень, спадковість закріплює ці зміни, зберігаючи їх у потомках, а природний добір залишає лише особин з індивідуальними відмінностями, що сприяють виживанню організмів. Постійне накопичення нових ознак на певному етапі приводить до утворення нового виду. Саме нові види краще пристосовані до життя, ніж їхні попередники, здатні залишити більшу кількість по-томків, що поступово спричинює витіснення старих форм новими. Це вчення, у якому роль рушійної сили еволюції належить природному добору, називається дарвінізм.
У подальшому еволюційна теорія розвивалася, збагачувалася відомостями з інших розділів біології, доповнювала їх, створюючи нові еволюційні напрями. Виникли еволюційна морфологія, еволюційна палеонтологія та еволюційна ембріологія (від грец. ембріон — зародок). Засновниками останньої були професор Новоросійського університету в Одесі Ілля Ілліч Мечніков (мал. 27) (1845-1916) і академік Петербурзької Академії наук, директор Севастопольської біологічної станції у 1892-1901 рр. Олександр Онуфрійович Ковалевський (1840-1901).
У XX ст. на основі дарвінізму й досягнень інших біологічних наук виникла синтетична теорія еволюції, яка об'єднала дарвінізм з досягненнями генетики. У її розвиток вагомий внесок зробив академік Академії наук України Іван Іванович Шмальгаузен (мал. 28) (1884-1963) — засновник і директор Інституту зоології, що сьогодні носить його ім'я, а також наш співвітчизник академік Національної академії США Феодосій Григорович Добжанський (мал. 29) (1900-1975).

Вчені
Завершальним етапом формування еволюційного вчення стало проникнення ідей дарвінізму в біологічну систематику. Це привело до створення природної системи організмів, якою користуються й досі. На відміну від штучної системи Ліннея, її побудовано за принципом спорідненості організмів: близькі види тварин об'єднано в категорію «рід», близькі роди утворюють категорію «родина», а близькоспоріднені родини — «ряди». Основою для визначення спорідненості організмів слугують не поодинокі ознаки, а їх комплекси, також особливості індивідуального розвитку організмів і дані еволюційної палеонтології.
Засновником природної системи тварин вважають німецького біолога Ернста Геккеля (мал. 30) (1834-1919), який першим побудував філогенетичне (від грец. філе — плем'я, генезис — походження) дерево царства Тварини.
Виникнення генетики й формування молекулярної біології. Пояснити механізми успадкування ознак намагалися ще Гіппократ і Аристотель. У подальшому вчені докладали великих зусиль, аби розкрити таємниці спадковості. Після перевідкриття у 1900 р. одночасно трьома вченими, незалежно один від одного, законів спадковості, установлених у 1865 р. Грегором Менделем (мал. 31) (1822-1884), виникла генетика (від грец. генезис — походження) — наука про мінливість і спадковість організмів. Принципово новим у працях Менделя було твердження про переривчастий характер спадковості, відкриття корпускул (від лат. корпускулюм — частка), одиниць спадковості, які у 1906 р. отримали назву — гени (від грец. генос — рід, походження).

Вчені
У 20-ті роки XX ст. розпочинаються бурхливі генетичні дослідження, і за кілька десятиліть генетика стає однією з найрозвиненіших біологічних наук, які використовували передові експериментальні методи. Такий стрімкий розвиток генетики був зумовлений як потребами сільського господарства, так і досягненнями інших галузей біології, що були підґрунтям для експериментального вивчення спадковості. Серед визначних учених-генетиків того часу особливе місце посідає академік Російської академії наук і Національної академії наук України Микола Іванович Вавилов (мал. 32) (1887-1943) — видатний організатор селекційної роботи, який виявив центри походження культурних рослин, сформулював ряд теоретичних положень генетики, зокрема закон гомологічних рядів у спадковій мінливості, що відіграв важливу роль у розвитку сільськогосподарських наук.
«В еволюційному розвитку немає хаосу; не дивлячись на різноманітність форм живого, мінливість вкладається у певні закономірності», — стверджував учений.
Успіхи біології XX ст. були б неможливі без використання досягнень інших наук, насамперед фізики й хімії. Саме завдяки методам фізики й хімії упродовж десятиліть розкрито численні таємниці генів: встановлено, що гени містяться в хромосомах і є одиницею спадкового матеріалу, який відповідає за формування певної елементарної ознаки. Далі було вивчено їх структуру і механізм дії. Особливе значення у дослідженнях, що інтенсивно проводилися в 40-50-х рр. XX ст., мали відкриття академіка НАН України Сергія Михайловича Гершензона (мал. 33) (1906-1999), досліди якого стали основою доведення того, що саме ДНК є носієм спадкової інформації.
Важливим відкриттям XX ст. стало розшифрування структури ДНК, яке в середині 50-х років здійснила група англійських учених. Модель структури ДНК побудували Джеймс Вотсон (мал. 34) (р. н. 1928) та Френсіс Гаррі Крік (мал. 35) (1916-2004). Це відкриття є початком молекулярної біології — науки, яка вивчає структуру й функції біологічних молекул та молекулярні основи спадковості. Сучасні успіхи молекулярної біології вражають. Нині можна вмістити ген бактерій в геном рослини, ген рослини — в геном тварини і навпаки. Такі досліди проводять у межах напряму сучасної науки, який отримав назву генної інженерії.
Вчені
Виникнення і розвиток екології. Термін екологія (від грец. ойкос — оселя, середовище, логос — вчення) був запроваджений у 1869 р. Е. Геккелем, який окреслив коло питань, пов'язаних із впливом чинників живої й неживої природи на життя організмів. Ця наука первинно виникла виключно для того, щоб розвивати ідеї Дарвіна щодо природного добору.
В екології сформувалися положення, що є актуальними й сьогодні: 1) тварини і рослини живуть угрупованнями, яким притаманні власні правила та закони; 2) рослини і тварини утворюють покрив Землі; 3) речовина й енергія на Землі перебувають у стані кругообігу. Ключовим моментом становлення екології як науки було формулювання понять екосистема (від грец. ойкос — оселя, середовище, система — об'єднання) і біогеоценоз (від грец. біо — життя, ге — Земля, коїнос — загальний).
Визначним досягненням біології XX ст. стало виникнення ідеї про єдність живого на Землі, яка сформувалася у вигляді вчення про біосферу (від грец. біо — життя, сфера — куля) — живу оболонку Землі. Як не дивно, ідею про те, що на зовнішній оболонці Землі міститься «сфера життя», висловив ще Ламарк, а термін «біосфера» був запроваджений у 1875 р. австрійським геологом Едуардом Зюссом (мал. 36) (1831-1914).
Зюсс писав: «...як на Сонці виділяють концентричні оболонки, так, напевно, і на Землі можна відрізнити оболонки, з яких кожна знаходиться у численних зв'язках з іншими... Перша оболонка — атмосфера, друга — гідросфера і третя — літосфера... Одне здається чужорідним на цьому великому, утвореному зі сфер небесному тілі, а саме — органічне життя. Там воно обмежене певною зоною на поверхні літосфери. Рослини, коріння яких у пошуках їжі проникає у ґрунт і піднімається у повітря, щоб дихати, є гарною ілюстрацією розташування органічного життя... Вона (біосфера) простягається тепер як над сухою, так і над вологою поверхнею». (Пригадайте, в які періоди існування планети біосфера обмежувалась лише водним середовищем.)
Особливого значення для розвитку вчення про біосферу набули праці академіка Володимира Івановича Вернадського (мал. 37) (1863-1945) — першого президента Академії наук України. Нині екологія являє собою систему наук, що має незаперечне значення для охорони природи.
Вчені

Вернадський стверджував, що важливим етапом еволюції біосфери буде її перехід до ноосфери (від лат. ноо — розум) — «сфери розуму» внаслідок розселення людини по усій поверхні планети, перемоги її над іншими біологічними видами, оволодіння силами природи та контролю над ними, розвитку позапланетних систем зв'язку, створення єдиної інформаційної системи, відкриття нових джерел енергії, залучення людей до наукової діяльності тощо. (Які прогнози науковця вже справдились?)
Ключовим етапом становлення сучасної біології є формування уявлень про еволюційний характер виникнення й розвитку життя на Землі, які з часом збагатились досягненнями генетики та екології.

С.В.Межжерін, Я.О.Межжеріна, Т.В.Коршевнюк, Біологія, 10 клас
Надіслано читачами інтернет-сайтів